Three Steps to Quantitative Data
STEP 1: FMT Data Generation
Raster scan laser light to measure absorption profiles
Raster scan laser light to measure corresponding fluorescence profiles
Generate paired absorption and fluorescence data maps from10,000 -100,000 source-detector projections
STEP 2: FMT Normalization
Process all paired Absorption and Fluorescence acquisition data to generate normalized fluorescence measurements
Feed normalized data into FMT algorithmic models of photon transport in tissue
STEP 3: FMT Reconstruction
Generate fluorescence quantification at each point in the subject
Calculate fluorescence measurements throughout Regions of Interest
Feed data into readily compatible universal formats for analysis, data base building, and decision-making
Generate accurate, quantitative data
Mouse asthma model
Fluorescence agent: ProSense (cathepsin B activity)
Quantify disease levels and therapeutic response
Use reflectance mode for baseline comparison
Use Quantitative Tomography mode for 3D image and quantification
技術規格:
System Imaging Parameters Two Imaging modes: Reflectance Imaging and Quantitative Tomography.
Available laser wavelengths:
Channel 1: Excitation = 670 nm, Emission = 700 nm
Channel 2: Excitation = 745 nm, Emission = 780 nm
FMT 2500 Software Within one integrated application, FMT 2500 Quantitative Tomography software provides:
system control
data acquisition
tomographic reconstruction
multiplexing capability
quantitative image analysis
data export and DICOM compatibility
Animal Handling Portable animal imaging cassette, multi-modality compatible
Integrated gas anesthesia capability
Heated internal animal imaging chamber
Optional Accessories Heated/anesthesia-ready external prep stations, linkable for increased throughput
Additional animal imaging cassettes
Multimodality adapters for CT, MR and PET co-registration
Publications:
1、Oncology:
A spatially and temporally restricted mouse model of soft tissue sarcoma.
Kirsch D.G, Dinulescu D.M, Miller J.B, Grimm J, Santiago P.M, Young N.P, Nielsen G.P, Quade B.J, Chaber C.J, Schultz C.P, Takeuchi O, Bronson R.T, Crowley D, Korsmeyer S.J, Yoon S.S, Hornicek F.J, Weissleder R, Jacks T. Nature Medicine, Vol. 13 Issue 8, p992-997 (2007)
Colonic adenocarcinomas: near-infrared microcatheter imaging of smart probes for early detection--study in mice.
Alencar H , Funovics MA , Figueiredo J, Sawaya H , Weissleder R , Mahmood U . Radiology. Jul;244(1):232-8. Epub May 16 (2007)
Selective antitumor effect of novel protease-mediated photodynamic agent.
Choi Y, Weissleder R, Tung CH. Cancer Res. Jul 15;66(14):7225-9 (2006)
Use of gene expression profiling to direct in vivo molecular imaging of lung cancer.
Grimm J , Kirsch DG , Windsor SD , Kim CF , Santiago PM , Ntziachristos V , Jacks T , Weissleder R . Proc Natl Acad Sci USA. 102(40):14404-9 (2005).
Use of gene expression profiling to direct in vivo molecular imaging of lung cancer
Proc Natl Acad Sci USA , October (2005)
Tomographic fluorescence mapping of tumor targets.
Montet et al., Cancer Research Jul 15, 65 (14):6330-6, (2005)
Detection of Dysplastic Intestinal Adenomas Using Enzyme-Sensing Molecular Beacons in Mice
Gastroenterology, February (2002)
In vivo imaging of tumors with protease activated near-infrared fluorescent probes.
Nature Biotechnology, April (1999)
2、Inflammatory Disease:
In vivo imaging of protease activity in arthritis: a novel approach for monitoring treatment response. Wunder A , Tung CH , Muller-Ladner U , Weissleder R , Mahmood U . Arthritis & Rheumatism 50(8), 2459-2465 (2004).
3、Skeletal Disease:
Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation. 2007 Dec 11;116(24):2841-50. Epub 2007 Nov 26.
Noninvasive optical detection of bone mineral. J Bone Miner Res. 2007 Aug;22(8):1208-16.
In vivo near-infrared fluorescence imaging of osteoblastic activity. Nature Biotechnology. 2001 Dec;19(12):1148-54.
4、Pulmonary Disease:
Haller JL, Hyde D, Deliolanis N , de Kleine R , Niedre M , Ntziachristos V . Visualization of Pulmonary Inflammation Using Non-invasive Fluorescence Molecular Imaging. J Appl Physiol., Jan (2008)
5、Cardiovascular Disease:
Dual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct. Nahrendorf M , Sosnovik DE , Waterman P , Swirski FK , Pande AN , Aikawa E , Figueiredo JL , Pittet MJ , Weissleder R .
Circ Res. Apr 27;100(8):1218-25. Epub 2007 Mar 22 (2007)
Nanoparticle PET-CT Imaging of Macrophages in Inflammatory Atherosclerosis.
Matthias Nahrendorf , Hanwen Zhang, Sheena Hembrador, Peter Panizzi, David E. Sosnovik, Elena Aikawa, Peter Libby, Filip K. Swirski, and Ralph Weissleder. Circulation, Jan; 117: 379 – 387 (2008)
Molecular Imaging Identifies Proteolytic and Osteogenic Activities in Early Aortic Valve Disease.
Aikawa E, Nahrendorf M, Sosnovik D, Lok VM, Jaffer FA, Aikawa M, Weissleder R Multimodality Circulation.;115:377-386 (2007)
Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo.
Deguchi JO , Aikawa M , Tung CH , Aikawa E ,Kim DE , Ntziachristos V , Weissleder R , Libby P. Circulation 114(1):55-62 (2006).
Near-infrared fluorescent imaging of matrix metalloproteinase activity after myocardial infarction.
Chen J , Tung CH , Allport JR , Chen S , Weissleder R , Huang PL . Circulation 111(14), 1800-1805 (2005).
In vivo imaging of proteolytic activity in atherosclerosis.
Chen J , Tung CH , Mahmood U , Ntziachristos V , Gyurko R , Fishman MC , Huang PL , Weissleder R . Circulation 105(23), 2766-2771 (2002).
In vivo Imaging of Proteolytic Activity in Atherosclerosis Circulation, June (2002)